MATH 32 - GRAPHING POLYNOMIALS - EXAMPLE AND EXERCISES

Here's an example of the process of sketching a polynomial, followed by a few exercises, supplemental to Homework 5.

Example: Let's sketch a graph of $p(x) = \frac{1}{3}x^3 + 2x^2 + 3x$. We'll begin by finding the zeros of p. To do this, we'll have to factor. First let's pull out the leading coefficient $\frac{1}{3}$. We get

$$p(x) = \frac{1}{3}(x^3 + 6x^2 + 9x).$$

Notice now that each term is a multiple of x. Factoring out x, we have

$$p(x) = \frac{1}{3}x(x^2 + 6x + 9).$$

Next we recognize that $(x^2 + 6x + 9)$ has the form $a^2 + 2ab + b^2 = (a + b)^2$, where in our case a = x and b = 3. So

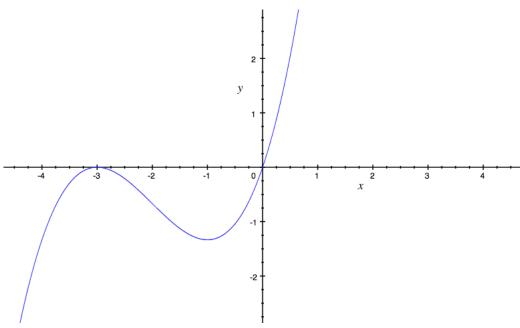
$$p(x) = \frac{1}{3}x(x+3)^2.$$

Having completely factored p, we see that its roots are 0 and -3. Next we'll do some sign analysis to see when p is positive and negative.

	$(-\infty, -3)$	(-3,0)	$(0,\infty)$
x	_	_	+
$(x+3)^2$	+	+	+
p(x)	_	_	+

The x term is negative on the intervals $(-\infty, -3)$ and (-3, 0), but it is positive on the interval $(0, \infty)$. On the other hand, $(x+3)^2$ is always positive, since it is a square! Multiplying them, we see that p(x) is negative on $(\infty, -3)$ and (-3, 0) and positive on $(0, \infty)$.

Now we'll sketch the graph. At this point, it could be helpful to also find the y-intercept. But for us, since 0 is a zero, the y-intercept is (0,0)!



Of course, I drew this with a computer, so it's more precise than I would expect your sketch to be. In particular, there is a "valley" at about x = -1, and we don't have the tools in Math 32 to determine where this valley occurs, just that it must happen somewhere in the interval (-3,0).

Note how as x increases beyond 0, the value of p(x) increases off the top of the window, and as x decreases below -3, the value of p(x) decreases off the bottom of the window. We know that this has to happen, since for x large and positive or negative, p(x) is dominated by its highest-degree term, that is, it behaves like $\frac{1}{3}x^3$.

Exercises:

For each of the following polynomial functions,

- (a) Find all zeros of p.
- (b) Determine the intervals on which p is positive and negative.
- (c) Sketch a graph of p.

1.
$$p(x) = -2x^5 - x^4 + 6x^3$$

2.
$$p(x) = (x+1)^2(x-4)^2$$

3. $p(x) = x^3 - x^2 - x - 2$

3.
$$p(x) = x^3 - x^2 - x - 2$$

Hint: 2 is a zero of p.